skip to main content


Search for: All records

Creators/Authors contains: "Rasul, Md Golam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Ferritin is a protein that regulates the iron ions in humans by storing them in the form of iron oxides. Despite extensive efforts to understand the ferritin iron oxide structures, it is still not clear how ferritin proteins with a distinct light (L) and heavy (H) chain subunit ratio impact the biomineralization process. In situ graphene liquid cell-transmission electron microscopy (GLC-TEM) provides an indispensable platform to study the atomic structure of ferritin mineral cores in their native liquid environment. In this study, we report differences in the iron oxide formation in human spleen ferritins (HSFs) and human heart ferritins (HHFs) using in situ GLC-TEM. Scanning transmission electron microscopy (STEM) along with selected area electron diffraction (SAED) of the mineral core and electron energy loss spectroscopy (EELS) analyses enabled the visualization of morphologies, crystal structures and the chemistry of iron oxide cores in HSFs and HHFs. Our study revealed the presence of metastable ferrihydrite (5Fe 2 O 3 ·9H 2 O) as a dominant phase in hydrated HSFs and HHFs, while a stable hematite (α-Fe 2 O 3 ) phase predominated in non-hydrated HSFs and HHFs. In addition, a higher Fe 3+ /Fe 2+ ratio was found in HHFs in comparison with HSFs. This study provides new understanding on iron-oxide phases that exist in hydrated ferritin proteins from different human organs. Such new insights are needed to map ferritin biomineralization pathways and possible correlations with various iron-related disorders in humans. 
    more » « less
  4. Abstract

    Rapidly growing flexible and wearable electronics highly demand the development of flexible energy storage devices. Yet, these devices are susceptible to extreme, repeated mechanical deformations under working circumstances. Herein, the design and fabrication of a smart, flexible Li‐ion battery with shape memory function, which has the ability to restore its shape against severe mechanical deformations, bending, twisting, rolling or elongation, is reported. The shape memory function is induced by the integration of a shape‐adjustable solid polymer electrolyte. This Li‐ion battery delivers a specific discharge capacity of140 mAh g‐1at 0.2 C charge/discharge rate with92% capacity retention after 100 cycles and99.85% Coulombic efficiency, at 20°C. Besides recovery from mechanical deformations, it is visually demonstrated that the shape of this smart battery can be programmed to adjust itself in response to an internal/external heat stimulus for task‐specific and advanced applications. Considering the vast range of available shape memory polymers with tunable chemistry, physical, and mechanical characteristics, this study offers a promising approach for engineering smart batteries responsive to unfavorable internal or external stimulus, with potential to have a broad impact on other energy storage technologies in different sizes and shapes.

     
    more » « less
  5. Abstract

    Developing promising solid‐state Li batteries with capabilities of high current densities have been a major challenge partly due to large interfacial resistance across the electrode/electrolyte interfaces. This work represents an integrated network of self‐standing polymer electrolyte and active electrode materials with in situ UV cross‐linking. This method provides a uniform morphology of composite polymer electrolyte with low thickness of 20–40 μm. This modification leads to promising cycling results with 85% specific capacity retention in Li||LiFePO4cell over 100 cycles at high current densities of 170 mA g−1(~25 μA cm−2, 1 C).By applying this method, the interfacial resistance decreases as high as seven folds compared to noncross‐linked interfaces. The following work introduce a facile and cost‐effective method in developing fast‐charging self‐standing polymer batteries with enhanced electrochemical properties.

    image

     
    more » « less